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Modeling Ferrimagnetic Resonators

MARK BUSWELL

Abstract —The impedance matrix for an arbitrary n-port ferrimagnetic
resonator is derived by applying Poynting’s theorem to a region of space
surrounding the resonator. Simplifications to the impedance matrix for
low-loss (Q > =100) ferrite material make it possible to obtain an equiva-
lent circuit model for the resonator, which can be used with most com-
puter-based circuit simulation programs. The circuit model for the
general-case polymodal ferrimagnetic resonator consists of a network of
single-pole resonators, each of which has a possible non-frequency-depen-
dent, nonreciprocal phase shift. The components of the circuit model are
described in terms of the propertics of the ferrite material, and the
coupling strength of the microwave circuit to the magnetostatic modes of
the ferrimagnet. The method is demonstrated in three simple examples,
including a one- and two-port loop coupled filter, and a ferrimagnet in a
waveguide.

1. INTRODUCTION

ERRIMAGNETIC resonators are microwave circuit

components in which the magnetic field of the mi-
crowave circuit is magnetically coupled to one or more of
the resonant magnetostatic modes of a ferrimagnet which
is placed in close proximity to the circuit [1]. These res-
onators are commonly made with single-crystal YIG and
waveguide or microstrip coupling circuits. Ferrimagnetic
(YIG) resonators are important components of many mi-
crowave devices, especially frequency tunable oscillators
and filters. It is important, in the light of recent advances
in the computer-aided design (CAD) of microwave cir-
cuits, to have an accurate technique of modeling these
components. Modeling of specific types of ferrimagnetic
resonators has been discussed extensively in the literature
[2], but no method of treating the general case has been
presented, and in most cases the models are inadequate for
accurate simulation with CAD programs. In this paper, an
equivalent circuit model is derived which is capable of
modeling any type of ferrimagnetic resonator structure, up
to high orders of accuracy. The topology of this circuit
model is entirely independent of the specific type of mi-
crowave circuit structure that is used to couple to these
modes, requiring only the specification of N(2n —1) circuit
coupling parameters for an n-port circuit coupled to N
magnetostatic modes. A straightforward procedure of cal-
culating these parameters up to any order of accuracy is
shown. In addition, this technique provides a unique in-
sight into the nature of operation of ferrimagnetic res-
onators.
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II. DERIVATION OF IMPEDANCE MATRIX FOR AN
n-PORT FERRIMAGNETIC RESONATOR

To derive the impedance matrix for a general n-port
ferrimagnetic resonator, Poynting’s theorem is applied to a
region of space £ surrounding the resonator. The volume
Q is chosen so that it entirely encloses the resonator, and
its surface S, contains the terminal reference planes of
each of the n ports. In addition, & must be large enough
so that the fields due to the magnetization or polarization
of the ferrite¢’ material are approximately zero at the
surface S,. In the region inside the volume £ but outside
of the volume ¥ which contains the ferrimagnetic material,
the fields have the form

ﬁzHOdm+(Eapp+ﬁm)e/”’ (1a)
M=0 (1b)
D= EO(Eapp + ?1,) e’v! (1c)

where H, is the magnitude; 4, is a unit vector in the
direction of the dc magnetic field; 4.5, and é,,, are the
applied RF magnetic and electric fields; and }7,,, and e,
are the magnetic and electric fields induced by the magne-
tization and polarization of the ferrimagnetic material. The
magnetization and polarization fields are asymptotically
dipolar and are assumed to be approximately zero on the
surface Sg. The magnetization M is of course zero in this
region.

Inside the volume 77 which contains the ferrimagnetic
material, the fields are given by

H=Ha,,+( R+ 1) e

(2a)

(2b)
D= eoer(?app (2¢)
where H, is the internal dc magnetic field, M, is the dc
magnetization (assumed saturated), and 7 is the RF mag-
netization. The polarization properties of the ferrimagnetic
material are assumed linear with a relative dielectric con-
stant of ,.
Poynting’s theorem can now be applied to the volume
Q. Assuming perfect conductors and no radiation loss,

M= Ma, + () e

e /wt
+ ep)e

"The methods used to derive the impedance matrix here are an exten-
sion of those used by Moll. [3]. It is made more general by including the
dielectric properties of the ferrite, allowing a more general coupling
structure (1t is not necessary that conductors be on the boundary of the
ferrite) and allowing a different Q (or line width) for each magnetostatic
mode.
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Poynting’s theorem for the RF portion of the time-aver-
aged harmonic fields is

average power + j-reactive power

Expanding the right-hand side, and expressing the power
in terms of the currents i, flowing into the ports p &€
{1---n} at the surface Sg, and the impedance matrix of
the resonator Z,,

A 7
)y El;zpq’q=7f9(“0|happl ‘0|eappl) v

p.q=1
iy eo(e —1)|&,,l*dV
]w
fﬂo )dV (4)
The terms involving & app *.h,, K, *-b, and €pp’ " €, make

no coatribution to the 1ntegra1, as shown in Appendix I.
The first term on the right-hand side of (4) describes the
normal reactances of the circuit, as if the ferrite material
were not there. The second term describes the additional
reactances due to the dielectric properties of the ferrite
material (for YIG, ¢, =16). The third term describes the
ferrimagnetic resonance properties of the circuit. This term
is analyzed extensively in Moll [3], and the results are
summarized below.

The complete impedance matrix for the general n-port
ferrimagnetic resonator can now be easily extracted from
(4). The fields &, and &, _ are related to the currents i »

app app
flowing into the ports:

()

where Z, is the characteristic impedance of the transmis-
sion line which carries power into port p. The impedance
matrix of the resonator is then

Z, = Zgre + Zgseeme p zieme. poge(l---n}
(6a)

Z;Zcmtzjw'/;z(‘uok;‘kq—eOZOﬂ;ZOqlp*lq) dVv (6b)
Z;l;electric - _ jw/V((er — 1) EOZO’:ZOq[_]E" . l;) dv. (60)

Using the result from Moll [3], the term involving the
ferrimagnetic resonance, Zlfeq"“e, is a superposition of the

impedance matrix for each magnetostatic mode, Z7,
uefl---N}):
N oL
ferrite __ fi . o
Zy = Z Zygi= L JonVk) X kg, (6d)
u=1 u=1
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The coupling vectors k pu are defined as

ad k ur 1 ic-) _)ur - ‘L_)u + .—)*M
k = » = _)p N av, \Pw = ¢ ’
o kpm k i \/5
— Ju - J_u — —
=t T =y 6
'4/“, ﬁ \Pu l[/ u ( e)
where 47,4 is the uth magnetostatic mode eigenvector [4].

The coupling vectors k ,, are seen to be proportional to the
projection of the magnetic field of the circuit structure
onto the magnetostatic modes of the ferrite. X, is the
susceptibility tensor of the uth magnetostatic mode of the
ferrimagnet:

<«

Xu™ ] 1 . 2
wu w 2-] wu

1
0,0 J(w——jAw )
2
. (61
J( w = EJAwu) @pr W06

where w,, = yM,, and vy is the gyromagnetic ratio. As Moll
describes, this susceptibility tensor is that of a general
shape ferrimagnet with the magnetostatic modes, Jur, x}ju,,
taken as the basis vectors. Note that the phenomenological
damping term that Moll used, Aw, has been replaced with
Aw,, as justified in Appendix II. This allows each magne-
tostatic mode to have unique loss characteristics.
Fquations (6) describe the complete impedance matrix
for any n-port ferrimagnetic resonator. In the next section,
these equations are even further simplified by assuming
that the ferrite material is relatively low-loss. This allows
derivation of a simple equivalent circuit model of the
ferrimagnetic resonator that is valid in the general case.

III. Tue IMPEDANCE MATRIX FOR Low-L0ss
FERRIMAGNETIC RESONATORS

The impedance matrix of each magnetostatic mode of
the resonator, Z feqr;“e. can be greatly simplified by making
the assumption that the ferrimagnetic material is relatively
low-loss, so that O, > =100 for each magnetostatic mode
ue{l---N} to be considered.> This approximation is
not a very restrictive assumption for most applications.

Introducing the quality factor Q, of each mode u, the
susceptibility tensor ¥, can be rewritten in terms of Q,.
Then keeping only terms that are first order in (1/0,), the

susceptibility tensor becomes

= 7

0= 1 7)
1 W,Wy, —jwwM)

Xy = G0 . 8

- L Pl RO

Q.

*For reference, ©Q, > =1000 for the uniform magnetostatic mode of an
ellipsoidal single-crystal YIG resonator.
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The magnitude of X, and, therefore, the magnitude of
Z Iff;;“e are negligible for frequencies that are not very close
to w,. Letting w = w, + 8 w,, and keeping only terms first
order in 8, and l/Qu,
W=

5,= - (9)
o _j(wM/wu)Qu(l —J)
T+ 08) \io 1)
Using the low-loss approximation of the susceptibility
tensor (10) in the definition of Z!* (eq. (6d)), the

pqu
following simplified result is obtained:

wy VO, - (1 —jl-
— okt k. (11
e rmat PR

Note that the term on the right-hand side of (11), involving
the coupling vectors only, can now be separated from the
rest of the equation. It becomes very useful to introduce
some new quantities, the coupling tensor K, ., the coupling
magnitude |K,, |, and the coupling phase shift ®,,,, which
can be defined from this term. Typically, the vectors k ,,
are functions of frequency, but any frequency dependence
would be second order in §,, so each component u« of the
tensor is evaluated at the resonant frequency w,;

K quE Iquule_J‘I)pqu—-‘u,OkT (j {) qulw w, (12)
Note that the coupling tensor K, is dependent only on
the geometry of the circuit structure, and of the ferrimag-
net, while the rest of the terms in (11) involve no circuit-
dependent factors. Therefore, a separation of the geometri-
cal considerations of circuit coupling from the general
ferrite material properties has been achieved. The coupling
tensor has some properties which prove to be very impor-
tant in determining the final circuit model of the res-
onator. Their proof is in Appendix III, and the properties
are exhibited here:

uu?

(10)

ferritc
pqu

K K
_ Dprutriqu _
pqu K,, K;;u quu’
pgt€{l---n},ue{l---N} (13a)
IquuI = IquuI = IKppul ququI *
pge {1 n),ue 1N} (13b)
®,,.,=0 (I)pqu == q)qpu Py =Py T P
p.g.t€{l---n},ue{l---N}. (13¢)

It is also useful to define a ferrimagnetic material depen-
dent term, the ferrimagnetic resistance of the uth magneto-
static mode, which is a pure real number proportional to
the product of the total magnetization of the ferrimagnet
and the Q of that mode, and has units of impedance:

Py = wMVQu = yMsVQu‘ (14)

Using the definitions (12) and (14) in (11), a very simple
expression for the impedance matrix of the uth magneto-

1EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 5. MAY 1989

Z circuit ——O
— Pq ——
L] Z dielectric [—
] pq I
— Z ferrite —
1 .
— pa
— Z ferrite —
— pa2 -
)
o .
4 °
Zferrite J
O—— paN O

Fig. 1. The 2-port ferrimagnetic resonator is a collection of series-con-
nected 2-ports. One 2-port is that of the circuit without the ferrimag-
net, the next represents the additional reactances due to the dielectric
properties of the ferrimagnet, and there is one 2-port for each of the N
magnetostatic modes.

static mode can be obtained:

pul pqul e
(1+,20,4,)

This is seen to be in the form of the impedance matrix for
an inductively coupled single-pole resonator with an addi-
tional non-frequency-dependent phase shift. The couphng
to the resonator is proportional to the product of the
ferrimagnetic resistance and the coupling magnitude, while
the non-frequency-dependent phase shift is given by the
coupling phase shift. The resonant frequency and the Q of
the resonator are those of the uth magnetostatic, mode. A
circuit model for this impedance matrix will be dérived in
the next section.

ferrite _
pqu

Poa, (15)

IV. EQUIVALENT CIRCUIT MODEL OF AN #n-PORT
FERRIMAGNETIC RESONATOR

The total impedance matrix (eq. (6a)) for the n-port
resonator is a summation of matrices, each of which is
itself an impedance matrix for an n-port element. The
summation of the matrices implies that each of these
n-port elements is connected in series to obtain the total
n-port circuit for the resonator. This situation is illustrated
in Fig. 1 for a 2-port resonator. To model the complete
resonator is equivalent to modeling each of the elements
ZC]qI‘CU.lt Z[«)i;electnc and ch;rnte’ uc {1 N}

The first term in (6a), Zc“cm‘ Jjust represents the normal
circuit impedance with the ferrlte absent. We assume that
a circuit model can be obtained for the circuit impedance.
The second term, Z&9ectnc  represents additional reac-
tances due to the dielectric loading of the circuit by the
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ferrimagnetic material. The dielectric loading is usually
ignored by most models, but it can be significant if the size
of the ferrimagnet is comparable to the size of the coupling
circuit geometry.

The simple form of (15) and the symmetry of the rela-
tions (13) suggest that it should be possible to derive a
simple circuit model which will mirror the impedance
matrix Z*7 for each magnetostatic mode u &€ {1--- N},
and indeed this is the case. By first demonstrating the
circuit representation for the 2-port, it is easy to deduce
the form of the general n-port model.

The two port impedance matrix Z, ™ for the mode u
is

ferrite __ Pu
‘ (1+,20.3,)
1K1 UK 1l 1Ky, €702

(16)
VIK 1 1 K 5] e/ 1K

By transforming this into the transmission matrix repre-
sentation, it is easy to separate this into cascaded elements,
one of which represents the phase shift e /% and the
other the resonance. After transforming and factoring, the
transmission matrix is

—i®
T ferrite _ (6 I 0 )
u

0 e /%
|K11u| 0
IK22u|
. (17)
(1+ J2Qu8u)/pu |K72u| ‘
VlKllul |K22u| ‘K]Iul

It is now straightforward to model the two cascaded
elements. The first element is a nonreciprocal phase shift,
which, upon transforming into H matrix form, yields the
following relations between the currents and voltages at
ports 1 and 2 of the element:

Vl _ 0 e_J(DlZu 11
(IZ)‘(_eJ'I’uu 0 )(V2 ) (18)

This nonreciprocal phase shift element can be modeled
with a voltage source and a current source, as shown in
Fig. 2(a). The second element has an impedance matrix of
the form of (16) with ®, =0, which is the impedance
matrix of an mductlvely coupled single-pole resonator.?
The resonant frequency of the resonator is equal to w,,
and the Q of the resonator is equal to Q,. The relatlon
between the resistor in the resonator and the mutual
inductance is indicated in Fig. 2(b). The complete circuit
model of the ferrimagnetic resonance element of the 2-port
ferrimagnetic resonator is shown in Fig. 2(b).

?Technically, the outer inductor of each coupled inductor parr must
have zero inductance for this impedance matrix to be correct. But usually,
an inductance in Z;‘,fc“" can be combined with the outer inductor to yield
a total inductance which is nonzero. See examples 1 and 2. If this is not
the case, current sources can be used to model the coupled inductors.
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l1->: """" CetTo T -2
vy A o
; |
J Eem \é-) emL l o— =
(a)
—0
Port 1 Port 2
——0
(b)
Fig. 2. (a) The nonreciprocal phase shift element consists of a voltage

and a current source with the indicated transfer functions. (b) The
complete 2-port circuit model for Zfe““e is the phase shift element
cascaded with an inductively coupled resonator

Port n

(0, Mpy )2

= pe{1.n}

=P, |Kppu|
u

Fig. 3. The complete n-port circuit model for the uth magnetostanc

mode resonance, Zjerte,

The general n-port ferrimagnetic resonance element,

Zfermite is shown in Fig. 3. It is easily deduced from the

similarity to the 2-port case, and by using the relations
(13c) for the nonreciprocal phase shift, that
® =0

pqu lqu

-0 ue{l---N}.

(19)

p,qe{l...n}

1pu>
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The circuit in Fig. 3, when connected in series with Z;it;c‘“t
and ZZ&detic can then model the ferrimagnetic resonance
of any n-port circuit structure when the parameters indi-
cated in the figure are supplied. The quantities necessary
to calculate the circuit element values fall into two cate-
gories:

ferrite material properties: w,, @Q,, p,=YMJVQ,

ue{l---N} (20a)

circuit coupling characteristics: |K, ()

pul7 1lpu

pe{l---n},ue{l---N}. (20b)

Typically, the ferrite material properties, Q, and M.,
would be measured on a calibrated test station for which
the circuit coupling characteristics are known. The reso-
nant frequency of each mode, w,, is usually a known
function of the dc biasing field and the saturation magneti-
zation M, [4]. The circuit coupling characteristics can be
calculated up to any degree of accuracy with (12) and (6e)
if the spatial dependence of the RF magnetic field and the
magnetostatic mode is known. In most cases, evaluation of
(6e) may require numerical integration; however a simpler
case can usually be considered to obtain the semiquantita-
tive circuit coupling characteristics (see the examples
below).

Figs. 4 and 5 illustrate the complete circuit model for
the 1- and 2-port cases, when coupled to N magnetostatic
modes. In the next section this method of ferrimagnetic
resonator modeling is applied to specific cases.

V. ExAMPLES

Example 1: Loop Coupled I-Port Ferrimagnetic
Resonator

Consider a ferrimagnet of small volume V" in the center
of a circular wire loop of radius r (see Fig. 6(a)). The dc
maghetic biasing field is uniform and is in the £ direction,
and the axis of the loop is in the X direction. Only
coupling to the uniform magnetostatic mode ¥, will be
considered. The uniform magnetostatic mode eigenvector
is simply ‘

—

- 1 -
¢1:_‘/§‘(£+])’>) Yy, =X ¥y, = J. (21)

The RF magnetic field El at the center of the loop, when a
current i; is flowing into the port, is

k1=—,—=——x". (22)

Assuming that V < r3, the integration in (6e) is readily
performed to calculate the coupling vector,

- k
k= (kir) = (1/02r). (23)
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R

Fig. 4. The complete circurt model for a 1-port fernmagnetic resonator
which is coupled to N magnetostatic modes.
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-0
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— 1% [ —
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s [ e

o) B 0, Q é
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Port 1 My vl Port 2
@ E 0, Qp %
122
" vt s
L] 12 M22 [ ]
hd .
H .
@ g Oy
12N
My Moy
(@ My )2 (@y Mgy VP
—a = Pkl R R [Kop] — u€{1.N}
u
Fig. 5. The complete circuit model for a 2-port fermmagnetic resonator

which is coupled to N magnetostatic modes.

And now, the coupling tensor, K;;; (which is just a scalar
in this case since n = N =1), is given by (12):

Ho

K=Kyl = ﬁ

(24)

The equivalent circuit is shown in Fig. 6(b). The loop is
modeled by an inductor L,;, and the dielectric properties
are ignored, since V' < r>. This model agrees with Carter’s
result [5].
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2

loop radius r

port 1

ferrite of y
X volume V
(a)
Ry
NV ]_
L11 (1)1'Q1
o I
A_A
M1

(@ M)® Py
R1 B 4r2
(b)

(a) The geometry for example 1, a 1-port loop coupled ferrimag-
netic resonator. (b) The equivalent circuit.

Fig. 6.

Example 2: 2-Port Loop Coupled Ferrimagnetic
Resonator / Filter :

Consider a ferrimagnet of small volume V at the center
of two circular wire loops of radii », and r, (see Fig. 7(a)).
The biasing field is in the Z direction, and the axis of loop
1 is in the £ direction. The axis of loop 2 is at an angle
towards § with respect to the axis of loop 1. Again, only
coupling to the uniform magnetostatic mode is considered.
The uniform magnetostatic mode eigenvector is the same
as in example 1. The magnetic fields at the center of the
loop are

k1=“———'§‘—x 2 N
I r 5

(25)

Again, the integration in (6€) is trivial, since V' < r?, so the
coupling vectors are

L1 L1 {cos(8)
1 cos
Fums-(o) Famarl e ©6
2k \0 12 ( sin(6) ) (26)
The coupling tensor is calculated with (12):
Mo Ho
[Kinl = w2 | Koo = a2 Dy =0. (27)

It is interesting to note that the nonreciprocal phase shift

_h Elr—z(cos(ﬂ))? +5in(0)5).
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Lt
¥ X
o— -0
Port 1 I g Port 2
R
L11 ]1 ! L22
2 B % 7 Q
L -0
A A
M, My

((01M1)2_ 1 Ho (ﬁ]1M2)2= P, Ho
R, = 4r? R; 4r,2
(b)

(a) The geometry for example 2, a 2-port loop coupled ferrimag-
netic resonator. (b) The equivalent circuat.

Fig. 7.

angle ®,,; is the same as the physical angle 6. The
equivalent circuit is shown in Fig. 7(b), where the loops are
modeled by coupled inductors. For the case of orthogonal
loops (8 =m/2), the result reduces to that given by
Carter [5].

Example 3: Ferrimagnet in Rectangular Waveguide
Propagating TE,, Mode

Consider a ferrimagnet of small volume V inside a
length / of rectangular waveguide of width a and height b.
The ferrite is located at a distance x,, from the sidewall of
height b, centered in the y direction and at an arbitrary z
location (see Fig. 8(a)). The assumption is made that only
the TE,, waveguide mode is propagating and that only the
uniform magnetostatic mode is excited. The RF magnetic
fields, h; and h, at the ferrimagnet location, are then
given by

=V (£~ je(w,x)P)sin(kx)e®/?

L K [2
k2=7%=- ™ (% + je(w,x)P)sin(kx)e®/2 (28)
2
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Yy
Xo
= S
e | $ [¥7;
b
7z
) p—
(@
O O —0 —0
O ZO ‘Z -
Ry
JSRE % 0 q %
—0
M, M,
2
_Slel<l —(&)1M1) = 2P (1-€" sn2(KXg)
/® 0 |elzl R, ab
2
L0.M 20,1, (1+ €)1 sin® (KXx,)
R1 ab
(b)
Fig. 8. (a) The geometry for example 3, a ferrimagnet in a waveguide.
(b) The equivalent circuit.
where
(@x) =gl w=D  p=(2)
€(w,x)=—cot(kx K=— ={—] —«k~.
’ B a c

The coupling vectors are again obtained from (6c), after a
trivial integration (we again assume that V < a%):

- \/gsin('fxo)( _jc(lw,xo))
R - \/gsin(lcxo)(je(wl, Xo) )

And the coupling tensor is calculated from these with (12):

(29)

2p 2.
K= (1”'5("-’19)60)) 51n2(rcx0)
IU‘O 2 .9
K221=7(1+€(‘*’1’x0)) Siny ("XO)
2pg .
K= —(e(wl, xo)z—l) sin? (kx,)
ab
0, le(wy, x0)[>1
D, = 30
2 {77, le(wy, xo)| <1. (30)

The waveguide can be modeled as a transmission line of
impedance Z; and length /, an element which is available
on most circuit simulation programs. The complete equiva-
lent circuit model is shown in Fig. 8(b). The result agrees
with that of James [6].
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VI. SuMMARY

A lumped element circuit model has been derived for a
general n-port ferrimagnetic resonator which is coupled to
N magnetostatic modes. The circuit model requires the
specification of N(2n —1) coupling parameters, |K ppub
®,,,, and 3N material parameters w,, p,, Q,. The material
parameters must be measured or estimated, and methods
for calculating the coupling parameters up to any order of
accuracy have been shown. The variety and complexity of
the many types of ferrimagnetic resonators have been
reduced to the specification of these parameters in the
circuit model. The technique is straightforward, and is
capable of modeling any ferrimagnetic resonator. The only
approximations that have been made are that the material
1s low-loss (Q,> =100, u&€ {1---N}) and that only N
magnetostatic modes are excited. Therefore this method is
appropriate for modeling common single-crystal YIG res-
onators.

The use of the technique has been demonstrated in some
simple examples, and application to more accurate models
of more complex resonators should be evident. This tech-
nique should prove very valuable in the development of
more accurate computer-aided design models of ferrimag-
netic resonators.

APPENDIX I

To demonstrate that the mtegrals in Poyntmg s theorem
with the terms h* “h. h b and e; eapp » are zero a proof
similar to Moll’s [ ]is used except it is not required that
the surface SQ be a conduetor boundary. To begm with,
note that v-b=v- happ €pp =0 and that h =V,
and €,=vV¢,, since the statle approximation is assumed
for these asymptotically dipolar fields, ' < (w/c)’. Then
the volume integrals can be transformed into surface inte-

“grals on S, where we have assumed that h =0, e,=0.

Then, on Sg, ¢,,= ¢, = constant, which we choose to be

zero. For example,

fh;-FdV=f¢,’;(5-ﬁ)dA~f x(v-B)dv—0. (31)
Q Sa Q

APPENDIX 1]

It can be easily seen experimentally that the different
magnetostatic modes can have very different Q values.
This can be taken into account in the theory, by introduc-
ing a phenomenological damping operator A, which has
the magnetostatic modes as eigenvectors, and the half-
width of the modes as eigenvalues. The representation of
this operator is not important as long as the eigenvectors
and eigenvalues are known:

_, 1 N
Aopltbiu:EAwulibiu' (32)
Using this in place of the scalar phenomenological damp-
ing term in the small-signal gyromagnetic equation, from
which Moll derives his results, yields the following equa-
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tion:

(Lop— Agp) = juith = YM, 8, X By (33)
where L is the operator described by Moll. The rest of
Moll’s derivation-is the same, and leads directly to the

“ modified susceptibility tensor, equation (6f).

APPENDIX 111

Only the first relation in the set of equations (13) is
proved. The rest follow easily. To start, note the following
relation: '

N - 1 _]— N ) . ) .
[kpu’k;u(j 1 )]z(k;ur_l_.]k;ui)({)(kpui —kpu")

(34)

where the brackets [,] indicate the commutator. Using this
in the following relation:

o /1
KptuK = kiu(j

tqu

= )T T T
kpu(j ) )k,u(j . )k Ko+K

(35)

=quuKttu7 p,q,tE{l"-n}
since the second term in the summation is zero.
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