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Modeling Ferromagnetic Resonators

MARK BUSWELL

Abstract — The impedance matrix for an arbitrary n-port ferrinragnetic
resonator is derived by applying Poynting’s theorem to a region of space

surrounding the resonator. Simplifications to the impedance matrix for

low-loss (Q> = 100) ferrite material make it possible to obtain an equiva-

lent circuit model for the resonator, which can be used with most com-

puter-based circuit simulation programs. The circuit model for the

general-case polyrnodal ferromagnetic resonator consists of a network of

single-pole resonators, each of which has a possible non-frequerscy-depen-

dent, nonreciprocal phase shift. The components of the circuit model are

described in terms of the properties of the ferrite material, and the

coupling strength of the microwave circuit to the magnetostatic modes of

the ferrimagnet. The method is demonstrated in three simple examples,

including a one- and two-port loop coupled filter, and a ferrimagnet in a

waveguide.

I. INTRODUCTION

F ERRIMAGNETIC resonators are microwave circuit

components in which the magnetic field of the mi-

crowave circuit is magnetically coupled to one or more of

the resonant magnetostatic modes of a ferrimagnet which

is placed in close proximity to the circuit [1]. These res-

onators are commonly made with single-crystal YIG and

waveguide or microstrip coupling circuits. Ferromagnetic

(YIG) resonators are important components of many mi-

crowave devices, especially frequency tunable oscillators

and filters. It is important, in the light of recent advances

in the computer-aided design (CAD) of microwave cir-

cuits, to have an accurate technique of modeling these

components. Modeling of specific types of ferromagnetic

resonators has been discussed extensively in the literature

[2], but no method of treating the general case has been

presented, and in most cases the models are inadequate for

accurate simulation with CAD programs. In this paper, an

equivalent circuit model is derived which is capable of

modeling any type of ferromagnetic resonator structure, up

to high orders of accuracy. The topology of this circuit

model is entirely independent of the specific type of mi-

crowave circuit structure that is used to couple to these

modes, requiring only the specification of N(2n – 1) circuit

coupling parameters for an n-port circuit coupled to N

magnetostatic modes. A straightforward procedure of cal-

culating these parameters up to any order of accuracy is

shown. In addition; this technique provides a unique in-

sight into the nature of operation of ferromagnetic res-

onators.
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II. DERIVATION OF IMPEDANCE MATRIX FOR AN

n-PORT FERROMAGNETIC RESONATOR

To derive the impedance matrix for a general n-port

ferromagnetic resonator, Poynting’s theorem is applied to a

region of space Q surrounding the resonator. The volume

Q is chosen so that it entirely encloses the resonator, and

its surface Sa contains the terminal reference planes of

each of the n ports. In addition, L? must be large enough

so that the fields due to the magnetization or polarization

of the ferritel material are approximately zero at the

surface S’a. In the region inside the volume !2 but outside

of the volume V which contains the ferromagnetic material,

the fields have the form

~=~06~+(ZaPP+Zn]e’”’ (la)

$=0 (lb)

-)eJof5= EO(Z&,+ep (lC)

where HO is the magnitude; d,. is a unit vector in the

direction of the dc magnetic field; ~,Pp and Z&P are the

applied RF magnetic and electric fields; and ~W, and FP

are the magnetic and electric fields induced by the magne-

tization and polarization of the ferromagnetic material. The

magnetization and polarization fields are asymptotically

dipolar and are assumed to be approximately zero on the

surface SQ. The magnetization Z is of course zero in this

region.

Inside the volume V which contains the ferromagnetic

material, the fields are given by

(
~= H,;,. + ;,PP + Z’,. ) e ‘tit (2a)

fi=lf,d~,+(fi)e~”’ (2b)

D = COC,(Z’aPP+ FP)e J@t (2C)

where H, is the internal dc magnetic field, M, is the dc

magnetization (assumed saturated), and Z is the RF mag-
netization. The polarization properties of the ferromagnetic

material are assumed linear with a relative dielectric con-

stant of E,.

Poynting’s theorem can now be applied to the volume

Q. Assuming perfect conductors and no radiation loss,

lThe methods used to derive the Impedance matrix here are an exten-

sion of those used by Mon. [3]. It is made more general by including the
dielectric properties of the ferrite, allowing a more general coupling

structure (It is not necessary that conductors be on the boundary of the
ferrite) and allowing a different Q (or line width) for each magnetostatic

mode.
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Poynting’s theorem for the RF portion of the time-aver-

aged harmonic fields is

average power + J’. reactive power

ju
—— ~J”y*.G:*-+w. (3)

Expanding the right-hand side, and expressing the power

in terms of the currents iP flowing into the ports p G

{1... n } at the surface S~, and the impedance matrix of

the resonator ZP~,

The terms involving ~,PP* -~~, ~~’.;, and Z,Pp*. ZP make

no contribution to the integral, as shown in Appendix I.

The first term on the right-hand side of (4) describes the

normal reactance of the circuit, as if the ferrite material

were not there. The second term describes the additional

reactance due to the dielectric properties of the ferrite

material (for YIG, C, =16). The third term describes the

ferromagnetic resonance properties of the circuit. This term

is analyzed extensively in Moll [3], and the results are

summarized below.

The complete impedance matrix for the general n-port

ferromagnetic r~sonator can now be easily extracted from

(4). The fields h,,, and @,PPare related to the currents ip

flowing into the ports:

where 20 is the characteristic impedance of the transmiss-

ion line ‘which carries power into port p. The impedance

matrix of the resonator is then

Zpq = Z;flt + Zdlelectnc + z ferrite
Pq Pq ‘ P>’~={1”””~1

(6a)

(6c)

Using the result from Moll [3], the term involving the
ferromagnetic resonance, Zp~‘emte, is a superposition of the

impedance matrix for each magnetostatic mode, Z~~~te,

UG{l. .. N}:

The coupling vectors ~PU are defined as

where ~U is the u th -magnetostatic mode eigenvector [4].
The coupling vectors kpU are seen to be proportional to the

projection of the magnetic field of the circuit structure

onto the magnetostatic modes of the ferrite. ~U is the

susceptibility tensor of the u th magnetostatic mode of the

ferrimagnet:

where UM = yi’kl~, and y is the gyromagnetic ratio. As Moll

describes, this susceptibility tensor is that of a general

shape ferrimagnet with the magnetostatic modes, ~U,, ~U,,

taken as the basis vectors. Note that the phenomenological

damping term that Moll used, Au, has been replaced with

AOU, as justified in Appendix II. This allows each magne-

tostatic mode to have unique loss characteristics.

Equations (6) describe die complete impedance matrix

for any n-port ferromagnetic resonator. In the next section,

these equations are even further simplified by assuming

that the ferrite material is relatively low-loss. This allows

derivation of a simple equivalent circuit model of the

ferromagnetic resonator that is valid in the general case.

III. THE IMPEDANCE MATRIX FOR Low-Loss

FERROMAGNETIC RESONATORS

The impedance matrix of each magnetostatic mode of

the resonator, Z~~r~’e, can be greatly simplified by making

the assumption that the ferromagnetic matetial is relatively

low-loss, so that Q,, > =100 for each magnetostatic mode
U= {l.. . N } to be considered. 2 This approximation is

not a very restrictive assumption for most applications.

Introducing the quality factor QU of each mode u, the

susceptibility tensor ~U can be rewritten in terms of Q..

Then keeping only terms that are first order in (l/Q U), the

susceptibility tensor becomes

(7)

2For reference, QI > = 1000 for the uniform magnetostatic mode of an

ellipsoidal single-crystal YIG resonator.
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The magnitude of ~U and, therefore, the magnitude of

Z&r~ite are negligible for frequencies that are not very close

to tiU. Letting u = u,, + 8UtiU, and keeping only terms first

order in SU and I/QU,

(9)

()–j(coM/ou)Qu I –J

‘u= (1+ j2Qutlu) j 1 “
(lo)

Using the low-loss approximation of the susceptibility

tensor (10) in the definition of Z$~r~ (eq. (6d)), the

following simplified result is obtained:

Note that the term on the right-hand side of (11), involving

the coupling vectors only, can now be separated from the

rest of the equation. It becomes very useful to introduce

some new quantities, the coupling tensor KP~U, the coupling

magnitude IKP~U1,and the coupling phase shift @P~U,which

can be defined from this term. Typically, the vectors kPU

are functions of frequency, but any frequency dependence

would be second order in 8U, so each component u of the

tensor is evaluated at the resonant frequency tiU:

Note that the coupling tensor KP~U is dependent only on

the geometry of the circuit structure, and of the ferrimag-

net, while the rest of the terms in (11) involve no circuit-

dependent factors. Therefore, a separation of the geometri-

cal considerations of circuit coupling from the general

ferrite material properties has been achieved. The coupling

tensor has some properties which prove to be very impor-

tant in determining the final circuit model of the res-

onator. Their proof is

are exhibited here:

Kp,uKlqu
K pqu = ~

ttu

in Appendix III, and the properties

K;qU = KqPU,

p,q, tG{l. ..n}, uG{N}. .N} (13a)

/KpqU1 = lKqPtil = ~-,

Jr, qG{ l.. .n}, uG{l. ..N} (13b)

@pp u = o @pqti= – @qpu @pqu= @pfu+ 0,,.,

p,q, tG{l. ..n}, uG{N}. .N}. (13c)

It is also useful to define a ferromagnetic material depen-

dent term, the ferromagnetic resistance of the uth magneto-

static mode, which is a pure real number proportional to

the product of the total magnetization of the ferrimagnet

and the Q of that mode, and has units of impedance:

(14)PU= @,#QU = YM~VQU.

Using the definitions (12) and (14) in (11), a very simple

expression for the impedance matrix of the u th magneto-

0 circuitz,, o

dielectricz,,

z ferrite

pql

z ferrite

pq2

●
●

●

●
●

☛

Fig. 1. The ?-port fernmagnetic resonator is a collection of series-con-

nected 2-ports. One ?-port is that of the circuit without the ferrimag-

net, the next represents the additional reactance due to the dielectric
properties of the ferrimagnet, and there is one 2-port for each of the N

magnetostatic modes.

static mode can be obtained:

(15)

This is seen to be in the form of the impedance matrix for

an inductively coupled single-pole resonator with an addi-

tional non-frequency-dependent phase shift. The coupling

to the resonator is proportional to the product of the

ferromagnetic resistance and the coupling magnitude, while

the non-frequency-dependent phase shift is given by the

coupling phase shift. The resonant frequency and the Q of

the resonator are those of the u th magnetostatic, mode. A

circuit model for this impedance matrix will be derived in

the next section.

IV. EQUIVALENT CIRCUIT MODEL OF AN n-PoRT

FERROMAGNETIC RESONATOR

The total impedance matrix (eq. (6a)) for the n-port

resonator is a summation of matrices, each of which is
itself an impedance matrix for an n-port element. The

summation of the matrices implies that each of these

n-port elements is connected in series to obtain the total

n-port circuit for the resonator. This situation is illustrated

in Fig. 1 for a 2-port resonator. To model the complete

resonator is equivalent to modeling each of the elements

Z~~tit, Z~Qel’ctr’c,and Z~q’;t:, u G {1 . . . N}.

The first term in (6a), Z~~W’, just represents the normal

circuit impedance with the ferrite absent. We assume that

a circuit model can be obtained for the circuit impedance.

The second term, Z$$ectr’c, represents additional reac-

tance due to the dielectric loading of the circuit by the
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ferromagnetic material. The dielectric loading is usually

ignored by most models, but it can be significant if the size

of the ferrimagnet is comparable to the size of the coupling

circuit geometry.

The simple form of (15) and the symmetry of the rela-

tions (13) suggest that it should be possible to derive a

simple circuit model which will mirror the impedance

matrix Z~qr~ for each magnetostatic mode u = {1 ..0 N},

and indeed this is the case. By first demonstrating the

circuit representation for the 2-port, it is easy to deduce

the form of the general n-port model.

The two port impedance matrix Zp for the mode u

is

P.7 ferrite =
-u

(1+ j2QU8U)

IK1lUI @GiiGIe-J”’2u
(16)

\ @mi-mf+’” IK22.I

By transforming this into the transmission matrix repre-,-
sentation, it is easy to separate this into cascaded elements,

one of which represents the phase shift e ‘JQpqu and the

other the resonance. After transforming and factoring, the

transmission matrix is

(Tuferrite = e ‘j@’z”

o
0

~ –1%2.
)

r

I%ul

lK22111

o

(1+j2Q.L)/~.

{
IK2J—.

JKmm IKIIUI

(17)

lt is now straightforward to model the two cascaded

elements. The firs; element is a nonreciprocal phase shift,

which, upon transforming into H matrix form, yields the

following relations between the currents and voltages at

ports 1 and 2 of the element:

(HVI o e–J@12u

)( )

11

12 = – ~J@12u o V2 “
(18)

This nonreciprocal phase shift element can be modeled

with a voltage source and a current source, as shown in

Fig. 2(a). The second element has an impedance matrix of

the form of (16) with @P~U= O, which is the impedance

matrix of an inductively coupled single-pole resonator. 3

The resonant frequency of the resonator is equal to UU,

and the Q ‘of the resonator is equal to QU. The relation

between the resistor in the resonator and the mutual

inductance is indicated in Fig. 2(b). The complete circuit

model of the ferrirnagnetic resonance element of the 2-port

ferromagnetic resonator is shown in Fig. 2(b).

3Technically, the outer inductor of each coupled inductor pau must

have zero inductance for this impedance matrix to be correct. But usually,
an inductance in Z~~l can be combined with the outer inductor to yield

a total inductance which is nonzeio. See extiples 1 and 2. If this is not
the case, current sources can be used to model the coupled inductors.

863

l,+, ------------------- -y-[~

. . . . . . . . . . . . . . . . . . . . .
(a)

( ‘“RM’”)2=p,IK1lUI
u

( blu M2J2
= Pu IK22UI

Ru
(b)

Fig. 2. (a) The nonreciprocal phase shift element consists of a voltage

and a current source with the indicated transfer functions. (b) The
complete 2-port circuit model for Z&!~te is the phase shift element
cascaded with an inductively coupled resonator.

/

‘“zlimc
‘OzEI=ii

M3u.

Q.

o

● e

MnU

(t). MP” )2
= ~, l&!J”l

R,
p< { I...n }

Fig. 3. The complete n-port circuit model for the u tb magnetostatic
mode resonance, Z}~r~te.

The general n-port ferromagnetic resonance element,
~f~~te, is shown in Fig. 3. It is easily deduced from the

similarity to the 2-port case, and by using the relations

(13c) for the nonreciprocal phase shift, that

alpqu = @lqu – @,pu, p,q={l”””n} U={l. .” iv}.

(19)
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The circuit in Fig. 3, when connected in series with Z~~ut

and Zfge]ectric, can then model the ferromagnetic resonance

of any n-port circuit structure when the parameters indi-

cated in the figure are supplied. The quantities necessary

to calculate the circuit element values fall into two cate-

gories:

ferrite material properties: tiU,

circuit coupling characteristics:

pe{l... n}

Q., P.= Y~YQu

U= {l.. . h’ } (20a)

Kpp.l> Q’lPU

Ue {l.. . N } . (20b)

Typically, the ferrite material properties, QU and M,,

would be measured on a calibrated test station for which

the circuit coupling characteristics are known. The reso-

nant frequency of each mode, aU, is usually a known

function of the dc biasing field and the saturation magneti-

zation M, [4]. The circuit coupling characteristics can be

calculated up to any degree of accuracy with (12) and (6e)

if the spatial dependence of the RF magnetic field and the

magnetostatic mode is known. In most cases, evaluation of

(6e) may require numerical integration; however a simpler

case can usually be considered to obtain the semiquantita-

tive circuit coupling characteristics (see the examples

below).

Figs. 4 and 5 illustrate the complete circuit model for

the 1- and 2-port cases, when coupled to N magnetostatic

modes. In the next section this method of ferromagnetic

resonator modeling is applied to specific cases.

V. EXAMPLES

Example 1: Loop Coupled 1-Port Ferromagnetic

Resonator

Consider a ferrimagnet of small volume V in the center

of a circular wire loop of radius r (see Fig. 6(a)). The dc

magtietic biasing field is uniform and is in the ; direction,

and the axis of the loop is in the 2 direction. Only

coupling to the uniform magnetostatic mode +1 will be

considered. The uniform magnetostatic mode eigenvector

is simply

The RF magnetic field ~1 at the center of the loop, when a

current il is flowing into the port, is

Assuming that V << r 3. the integration in

performed to calculate the coupling vector,

(22)

(6e) is readily

(23)

o z circuit dielectric

Pq
z ,q

fib

i

vu-!l”
MI

R2

RN

MN

( tiu Mu )2
- Pu K1lU

Ru –
u<{ 1... N }

Fig. 4. The complete circuit model for a l-port ferromagnetic resonator

which-is coupled to N magnetostatlc modes.

o
z

clrcult o

Pq

Zdielectrfc

I
Pq

Port 1 Port 2

(O, MI. )2 (W, Mzu )2

= % IKII.I ~
= p, IK22,1

Ru
UC{ 1...N }

u

Fig. 5. The complete circuit model for a 2-port ferromagnetic resonator

which is coupled to N magnetostatlc modes.

And now, the coupling tensor, Kill (which is just a scalar

in this case since n = N = 1), is given by (12):

Po

~111 = 1~1111= ~. (24)

The equivalent circuit is shown in Fig. 6(b). The loop is

modeled by an inductor Lll, and the dielectric properties

are ignored, since V << r 3. This model agrees with Carter’s

result [5].
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I
z

x I

loop radius r

Y
x volume V

(a)

3u&

Ml

(b)

Fig. 6. (a) The geometry for example 1, a l-port loop coupled ferromag-

netic resonator. (b) The equivalent circuit.

Example 2: 2-Port Loop Coupled Ferromagnetic

Resonator/Filter

Consider a ferrimagnet of small volume V at the center

of two circular wire loops of radii rl and r~ (see Fig. 7(a)).

The biasing field is in the 2 direction, and the axis of loop

1 is in the i direction. The axis of loop 2 is at an angle 8

towards } with respect to the axis of loop 1. Again, only

coupling to the uniform magnetostatic mode is considered.

The uniform magnetostatic mode eigenvector is the same

as in example 1. The magnetic fields at the center of the

loop are

(25)

Again, the integration in (6e) is trivial, since V << r 3, so the

coupling vectors are

The coupling tensor is calculated with (12):

It is interesting to note that the nonreciprocal phase shift

of radius rl

loop

por port 2

(a)

‘t3 ‘u
Ml M2

( (I)IMI)2= f?pO ( fIh M2)2= ~&

RI 4r12 R1 4r22

(b)

Fig. 7. (a) The geometry for example 2, a 2-port loop coupled fernmag-
netic resonator, (b) The equivalent circtut.

angle @121 is the same as the physical angle 19. The

equivalent circuit is shown in Fig. 7(b), where the loops are

modeled by coupled inductors. For the case of orthogonal

loops (0 = n/2), the result reduces to that given by

Carter [5].

Example 3: Ferrimagnet in Rectangular Waueguide

Propagating TEIO Mode

Consider a ferrimagnet of small volume V inside a

length 1 of rectangular waveguide of width a and height b.

The ferrite is located at a distance XO from the sidewall of

height b, centered in the y direction and at an arbitrary z

location (see Fig. S(a)). The assumption is made that only

the TEIO waveguide mode is propagating and that only the

uniform magnetostatic mode is excited. The RF magnetic

fields, ~1 and 12 at the ferrimagnet location, are then

given by
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I
z

/

(a)

o 0

-+-@--l

JI=MX3L4
—---u

w M2

(6.)1M2)2 2D1~O(1+ 6)2sin2(K x0)
— ._

RI ab

(b)

Fig. 8. (a) The geometry for example 3, a ferrimagnet in a waveguide.

(b) The equivalent circuit.

where

The coupling vectors are again obtained from (6e), after a

trivial integration (we again assume that V<< a 3):

z,,=~sin(.xo)(-,(:@>xo))

And the coupling tensor is calculated from these with (12):

221- ~(l+~(w,, xO))2sin2(~xo)K–

@12, = (o, l~(%,xo)l>l

T, 1~(%, xo)l<l-
(30)

The waveguide can be modeled as a transmission line of

impedance 20 and length 1, an element which is available

on most circuit simulation programs. The complete equiva-

lent circuit model is shown in Fig. 8(b). The result agrees

with that of James [6].

VI. SUMMARY

A lumped element circuit model has been derived for a

general n-port ferromagnetic resonator which is coupled to

N magnetostatic modes. The circuit model requires the

specification of N(2n – 1) coupling parameters, IKPP,,I,

@~PU,and 3N material parameters o,,, pu, QU. The material
parameters must be measured or estimated, and methods

for calculating the coupling parameters up to any order of

accuracy have been shown. The variety and complexity of

the many types of ferromagnetic resonators have been

reduced to the specification of these parameters in the

circuit model. The technique is straightforward, and is

capable of modeling any ferromagnetic resonator. The only

approximations that have been made are that the material

is 10W-1OSS(QU > x1O(), u ~ {1 . . . N}) and that onlY N

magnetostatic modes are excited. Therefore this method is

appropriate for modeling common single-crystal YIG res-

onators.

The use of the technique has been demonstrated in some

simple examples, and application to more accurate models

of more complex resonators should be evident. This tech-

nique should prove very valuable in the development of

more accurate computer-aided design models of ferromag-

netic resonators.

APPENDIX I

To demonstr~te th+at t~e i~tegrals in Poynting’s theorem

with the terms h&. h.,, h;. b, and Z,P. ZP are zero a proof

similar to Moll’s [3] is used, except it is not required that

the surface S~ be a conductor boundary. To begin with,

note that v. ~ = v. ;aPP = v. Z,PP= O and that ~w, = V~w,

and ZP= V%, since the static approximation is assumed

for these asymptotically dipolar fields, V<< ( ti/c) 3. Then

the volume integrals can be transformed into surface inte-

grals on Sa, where we have assumed that ~w, = O, < = O.

Then, on SO$ ~w = I$P= constant, which we choose to be

zero. For example,

APPENDIX II

It can be easily seen experimentally that the different

magnetostatic modes can have very different Q values.

This can be taken into account in the theory, by introduc-

ing a phenomenological damping operator A .P which has

the magnetostatic modes as eigenvectors, and the half-

width of the modes as eigenvalues. The representation of

this operator is not important as long as the eigenvectors

and eigenvalues are known:

1
J%PLU=yf%;+,,. (32)

Using this in place of the scalar phenomenological damp-

ing term in the small-signal gyromagnetic equation, from

which Moll derives his results, yields the following equa-
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tion:

(Lop -Aop)ti=@ti - ,M#mx i.,, (33) ;;

where LOP is the’ operator described by Mon. The rest of

Moll’s derivations the same, and leads directly to the ~~1

modified susceptibility tensor, equation.

APPENDIX III [4]

Only the first relation in the set of equations (13) is 15]

proved. The rest follow easily. To start, note the following

relation: [6]

where

in the

(34)

the brackets [,] indicate the commutator. Using this

following relation:

~ ‘(: ‘:)[=’(;3
= KpquKttu, p,q, t={l. .-n}

since the second term in the summation is zero.
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